If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3r^2+32r-48=0
a = 3; b = 32; c = -48;
Δ = b2-4ac
Δ = 322-4·3·(-48)
Δ = 1600
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$r_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$r_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1600}=40$$r_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(32)-40}{2*3}=\frac{-72}{6} =-12 $$r_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(32)+40}{2*3}=\frac{8}{6} =1+1/3 $
| 1/z-1/2z-1/5z=10/(z+1) | | (a+8)^2+2a=7 | | (3x-7)+(x+3)=180 | | 3-4a=5-3a | | P+q=2 | | 7k-2=13k+3 | | 80–5(y-1)=0 | | 2x+20+x+30=140 | | 4y=7y-9 | | (2x3)+(3x4)= | | a=2(0.25)/30² | | y2-8y=-7 | | -2(2x-1)=4(4-x)-14 | | .75x=-3 | | 3^1-2n=3^1-3n | | 4k+17=6k-11 | | (s-5)2=16 | | (x-2)/8-2x=1/6 | | -4x/8=-2 | | 2x/5+(x+2)+1x/3-1=3x-5 | | -6(1+2x)-8=2(5x+4) | | 2x/5+(x+2)+1x/3-(x-1)=3x-5 | | x4-2x3-2x2+2x+1=0 | | (5)=3x²-2x+1 | | 4x+10+8x-2=12x+8 | | 6(k+6)=3(2k-1) | | 360=120+95+85+x | | 3(2x-1)=6 | | 10+2(2x—1)=16 | | P²+2p-15=0 | | (4-i)(-2+6i)=0 | | 3m²-8m-4=0 |